6686体育:膜分离属于什么分离?膜分离技术法制取氧气

 提示:点击图片可以放大

将所有的气体冲入到一个气球当中,然后冲入到氢氧化钠溶液的加塞广口瓶中,在另一端收集尾气,尾气为全部的氧气;将氢氧化钠溶液广口瓶中加入过量的盐酸,使其充分反映,在尾端收集气体,收集的气体是二氧化碳。反应方程式是

NaOH+CO2=NaHCO3

NaHCO3+HCl=NaCl+H2O+CO2(气体)

装置不好说,自己想想看,我想你应该见过

空分制氮的原理是

碳分子筛可以同时吸附空气中的氧和氮,其吸附量也随着压力的升高而升高,而且在同一压力下氧和氮的平衡吸附量无明显的差异。因而,仅凭压力的变化很难完成氧和氮的有效分离。如果进一步考虑吸附速度的话,就能将氧和氮的吸附特性有效地区分开来。氧分子直径比氮分子小,因而扩散速度比氮快数百倍,故碳分子筛吸附氧的速度也很快,吸附约1分钟就达到90%以上;而此时氮的吸附量仅有5%左右,所以此时吸附的大体上都是氧气,而剩下的大体上都是氮气。这样,如果将吸附时间控制在1分钟以内的话,就可以将氧和氮初步分离开来,也就是说,吸附和解吸是靠压力差来实现的,压力升高时吸附,压力下降时解吸。而区分氧和氮是靠两者被吸附的速度差,通过控制吸附时间来实现的,将时间控制的很短,氧已充分吸附,而氮还未来得及吸附,就停止了吸附过程。因而变压吸附制氮要有压力的变化,也要将时间控制在1分钟以内。

膜分离技术是指利用人工合成的高分子膜使溶剂与溶质或微粒隔断,在膜两侧使水与水中成分或水中各类成分之间的运输推动力形成差异,把预去除的成分分离出去的方法。

与传统过滤器不同之处是,膜可以在离子或分子范围内进行分离,不需发生相的变化和添加助剂。

膜分离技术法制取氧气如下:

膜分离技术的分类:

第1种:按照微观结构进行分类。膜分离技术可分为对称和不对称两种膜、单层和多层两种复合膜;

第2种:按照宏观结构进行分类,膜分离技术可分为平板、管式、中空纤维、卷式以及毛细管这五种膜。

膜分离技术制取氧气的原理:

通常膜分离技术都是利用有机聚合膜渗透选择性,从气体混合物中分离出富氧气体。理想的薄膜材料应具有很高的选择性和渗透性。

或者说是:利用空气中各组分透过高分子分离膜的渗透速率不同,在压力差驱动下,将空气中的氧气富集来获得富氧空气的技术称为膜法富氧技术。

空气的主要成分是氮气(占78%)和氧气(占21%),因此,可以说空气是制备氮气和氧气取之不尽的源泉。氮气主要用于合成氨、金属热处理的保护气氛、化工生产中的惰性保护气(开停车时吹扫管线、易氧化物质的氮封、压料)、粮食贮存、水果保鲜和电子工业等。氧气主要用于冶金、助燃气、医疗、废水处理和化学工业中的氧化剂等。如何廉价地分离空气制取氧气和氮气,这是化工工作者长期潜心研究解决的问题。

工业上分离空气的传统方法是采用深冷分离法,即将空气冷却到-150℃以下,再用低温精馏的方法实现分离。该法可以同进得到氮气和氧气,还可以得到液氮和液氧。但是,低温精馏法存在能耗高、流程长、启动过程长、设备维护要求高等缺点,因此近十几年来受到了变压吸附法和膜分离法等新兴分离方法的严峻挑战。

变压吸附法

变压吸附法分离空气的机理有两种。一种是利用5A沸石分子筛的选择吸附特性,即5A沸石分子筛对氮气的平衡吸附量大于对氧气的平衡吸附量,这样当空气通过沸石床层时氮气就被吸附,流出氧气作为产品。当沸石吸附氮气饱和后,停止通入空气,并把床层抽成真空,抽出的氮气作为产品。另一种是利用碳分子筛的运态吸附特性,即碳分子筛对氧气和氮气的平衡吸附量相差不大,但由于氧气的分子尺寸(2.8×3.9)比氮气的分子尺寸(3.0×4.1)小,因而氧气在碳分子筛中的扩散速度快,吸附量也大,于是氧气在碳分子筛中的扩散速度快,吸附量也大,于是氧气被吸附,流出氮气作为产品。隔一段时间后,停止通入空气,把床层抽真空使碳分子筛再生。该法通常是在吸附阶段为0.1~0.5×106Pa、解吸阶段为常压或真空及常温的条件下进行的,在工业上很容易实现。

用变压吸附法分离空气可以得到富氧空气和99.9%的纯氮气,耗电量均小于1.0kwh/m36686体育app浏览器。目前,世界上用5A沸石分了筛制氧以日本最为成熟,氧浓度可达96%,耗电量仅为0.4kwh/m3。

总之,用变压吸附法分离空气具有能耗低、流程短、开停车时间短、自动控制、产品浓度可调等等优点,可望有较大的发展。

膜分离法6686体育app浏览器

膜法分离空气利用的是渗透原理,即氧气和氮气在非多孔高分子膜内的扩散速率不同。当氧气和氮气吸附在高分子膜表面时,由于膜两侧存在着浓度梯度,使气体扩散并通过高分子膜,接着在膜的另一侧解吸。因为氧气分子的体积小于氮气分子,因而氧气在高分子膜内的扩散速率大于氮气,这样,当空气通入膜的一侧时,在另一侧就可以得到富氧空气,同一侧得到氮气6686体育。

用膜法分离空气可以连续得到氮气和富氧空气。目前的高分子膜对氧、氮分离的选择性系数只有3.5左右,渗透系数也较小。分离得到的产品氮气浓度为95~99%,氧气浓度仅为30~40%。膜法分离空气一般是在常温和压力为0.1~0.5×106Pa的条件下操作的。

由于变压吸附法和膜法的崛起,中小规模的深冷空分装置已开始让出一部分市场。目前,变压吸附法和膜法的主要缺点是产品浓度不够高、回收率较低,这要通过改进吸附剂和高分子膜来克服。

氧是一种化学元素,其原子序数为8,由符号“O”表示。在元素周期表中,氧是氧族元素的一员,它也是一个高反应性的第2周期非金属元素,很容易与几乎所有其它元素形成化合物(主要为氧化物)。在标准状况下,两个氧原子结合形成氧气,是一种无色无嗅无味的双原子气体,化学式为O2。如果按质量计算,氧在宇宙中的含量仅次于氢和氦,在地壳中,氧则是含量最丰富的元素。氧不仅占了水质量的88%,也占了空气体积的20.9%。\x0d\x0a构成有机体的所有主要化合物都含有氧,包括蛋白质、碳水化合物和脂肪。构成动物壳、牙齿及骨骼的主要无机化合物也含有氧。由蓝藻、藻类和植物经过光合作用所产生的氧气化学式为O2,几乎所有复杂生物的细胞呼吸作用都需要用到氧气。对于厌氧性生物来说,氧气是有毒的。这类生物曾经是早期地球上的主要生物,直到2.5亿年前O2开始在大气层中逐渐积累。氧气的另一个同素异形体是臭氧。在高海拔形成的臭氧层能够隔离来自太阳的紫外线辐射。但是接近地表的臭氧则是一种污染,这些臭氧主要存在与光化学烟雾中。\x0d\x0a氧气是由约瑟夫·普利斯特里和卡尔·威廉·舍勒独立发现的。虽然卡尔比约瑟夫早发现一年,但由于约瑟夫首先发表论文,所以很多人仍然认为是约瑟夫首先发现的。氧气的英文名是“Oxygen”,由拉瓦锡定名与1777年,拉瓦锡利用氧气所进行的试验在燃烧和腐蚀的方面打败了当时流行的燃素说。在工业上,氧气是通过分馏液态空气制备的,同时使用分子筛除去二氧化碳和氮气。也可以通过电解水等其他方式制备氧气。氧气的运用包括钢铁的冶炼、塑料和纺织品的制造以及作为火箭推进剂与进行氧气疗法,也用来在飞机、潜艇、太空船和潜水中维持生命。\x0d\x0a氧的单质形态有氧气(O2)和臭氧(O3)。氧气在标准状况下是无色无味无臭,能帮助燃烧的双原子的气体。液氧呈淡蓝色,具有顺磁性。氧能跟氢化合成水。臭氧在标准状况下是一种有特殊臭味的蓝色气体。氧的单质形态有氧气(O2)和臭氧(O3)。氧气在标准状况下是无色无味无臭,能帮助燃烧的双原子的气体。液氧呈淡蓝色,具有顺磁性。氧能跟氢化合成水。臭氧在标准状况下是一种有特殊臭味的蓝色气体。\x0d\x0a1.【物理性质】\x0d\x0a在标准状况下,氧气的密度是1.429g_L,比空气的密度(1.293g_L)略大。它不易溶于水,在室温下,1L水中只能溶解于约30mL氧气。在压强为101kPa时,氧气在-183°C时变为蓝色液体,在-218°C时会变成淡蓝色雪花状的固体。 2.【化学性质】\x0d\x0a\x0d\x0a氧气的化学性质比较活泼。除了惰性气体、活性小的金属元素如金、铂、银、钯之外,大部分的元素都能与氧起反应,这些反应称为氧化反应,而反应产生的化合物称为氧化物。一般而言,非金属氧化物的水溶液呈酸性,而碱金属或碱土金属氧化物则为碱性。此外,几乎所有的有机化合物,可在氧中剧烈燃生成二氧化碳与水。氧原子的结构\x0d\x0a(1)、氧气跟金属反应:\x0d\x0a与钾的反应:\x0d\x0a4K+O2=2K2O,钾的表面变暗\x0d\x0a2K+O2=K2O2;K+O2=KO2(超氧化钾),(条件:点燃或加热,两个反应同时进行)\x0d\x0a与钠的反应:\x0d\x0a4Na+O2=2Na2O,钠的表面变暗\x0d\x0a2Na+O2=Na2O2(条件:点燃或加热),产生黄色火焰,放出大量的热,生成淡黄色粉末。\x0d\x0a与镁的反应;2Mg+O2=2MgO(条件:点燃),剧烈燃烧发出耀眼的强光,放出大量热,生成白色固体。\x0d\x0a与铝的反应;4Al+3O2=2Al2O3(条件:点燃),发出明亮的光,放出热量,生成白色固体。\x0d\x0a与铁的反应;\x0d\x0a4Fe+3O2+2xH2O=2Fe2O3·xH2O,(铁锈的形成)\x0d\x0a3Fe+2O2=Fe3O4(条件:点燃),红热的铁丝剧烈燃烧,火星四射,放出大量热,生成黑色固体。\x0d\x0a与锌的反应:2Zn+O2=2ZnO(条件:点燃),\x0d\x0a与铜的反应;2Cu+O2=2CuO(条件:加热),加热后亮红色的铜丝表面生成一层黑色物质。\x0d\x0a(2)、氧气跟非金属反应:\x0d\x0a与氢气的反应:2H2+O2=2H2O(条件:点燃),产生淡蓝色火焰,放出大量的热,并有水生成。\x0d\x0a与碳的反应:CO2(carbon dioxide)\x0d\x0a(碳+氧气→二氧化碳)C+O2=CO2(条件:点燃),剧烈燃烧,发出白光,放出热量,生成使石灰水变浑浊的气体。\x0d\x0a氧气不完全时则产生一氧化碳:2C+O2=2CO(条件:点燃)。\x0d\x0a与硫的反应:S+O2=SO2(条件:点燃),发生明亮的蓝紫色火焰,放出热量,生成有刺激性气味的气体,该气体也能使成清石灰水变浑浊,且能使酸性高锰酸钾溶液或品红溶液褪色。\x0d\x0a与红磷的反应:4P+5O2=2P2O5(条件:点燃),剧烈燃烧,发光放热,生成白烟。(P4O10为五氧化二磷的分子式,此处写P2O5亦可)\x0d\x0a与白磷的反应:P4+5O2=2P2O5,白磷在空气中自燃,发光发热,生成白烟。\x0d\x0a与氮气的反应:N2+O2=2NO(条件:放电)\x0d\x0a与氧气的反应:3O2=2O3(条件:放电)\x0d\x0a(3)、氧气跟一些有机物反应,如甲烷、乙炔、酒精、石蜡等能在氧气中燃烧生成水和二氧化碳。\x0d\x0a气态烃类的燃烧通常发出明亮的蓝色火焰,放出大量的热,生成水和能使澄清石灰水变浑浊的气体。\x0d\x0a甲烷:CH4+2O2=CO2+2H2O(条件:点燃)\x0d\x0a乙烯:C2H4+3O2=2CO2+2H2O(条件:点燃)\x0d\x0a乙炔:2C2H2+5O2=4CO2+2H2O(条件:点燃)\x0d\x0a苯:2C6H6+15O2=12CO2+6H2O(条件:点燃)\x0d\x0a甲醇:2CH3OH+3O2=2CO2+4H2O(条件:点燃)\x0d\x0a乙醇:CH3CH2OH+3O2=2CO2+3H2O(条件:点燃)\x0d\x0a碳氢氧化合物与氧气发生燃烧的通式:4CxHyOz+(4x+y-2z)O2=4xCO2+2yH2O(条件:点燃)(通式完成后应注意化简!下同)\x0d\x0a烃的燃烧通式:4CxHy+(4x+y)O2=4xCO2+2yH2O(条件:点燃)\x0d\x0a乙醇被氧气氧化:2CH3CH2OH+O2=2CH3CHO+2H2O(条件:Cu,加热)\x0d\x0a此反应包含两个步骤:(1)2Cu+O2=2CuO(加热)(2)CH3CH2OH+CuO=CH3CHO+Cu+H2O(加热)\x0d\x0a氯仿与氧气的反应:2CHCl3+O2=2COCl2(光气)+2HCl\x0d\x0a(4)、氧气与其它化合物的反应:\x0d\x0a硫化氢的燃烧:(完全)2H2S+3O2=2H2O+2SO2;(不完全)2H2S+O2=2H2O+2S(条件:点燃)\x0d\x0a煅烧黄铁矿:4FeS2+11O2=2Fe2O3+8SO2(条件:高温)\x0d\x0a二氧化硫的催化氧化:2SO2+O2=2SO3(条件:V2O5,加热)\x0d\x0a空气中硫酸酸雨的形成:2SO2+O2+2H2O=2H2SO4\x0d\x0a氨气在纯氧中的燃烧:4NH3+3O2(纯)=2N2+6H2O(条件:点燃)\x0d\x0a氨气的催化氧化:4NH3+5O2=4NO+6H2O(条件:Pt,加热)\x0d\x0a一氧化氮与氧气的反应:2NO+O2=2NO2

膜分离属于什么分离的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于膜分离技术法制取氧气、膜分离属于什么分离的信息别忘了在本站进行查找哦。